6 : inputFile(file), pca(false) {
10 if (threshold < 0 || threshold >= 1) {
12 MACH3LOG_INFO(
"Principal component analysis but given the threshold for the principal components to be less than 0, or greater than (or equal to) 1. This will not work");
15 MACH3LOG_INFO(
"Am instead calling the usual non-PCA constructor...");
25 : inputFile(YAMLFile[0].c_str()), matrixName(name), pca(true) {
29 for(
unsigned int i = 0; i < YAMLFile.size(); i++)
35 if (threshold < 0 || threshold >= 1) {
36 MACH3LOG_INFO(
"Principal component analysis but given the threshold for the principal components to be less than 0, or greater than (or equal to) 1. This will not work");
39 MACH3LOG_INFO(
"Am instead calling the usual non-PCA constructor...");
68 MACH3LOG_ERROR(
"Adaption has been enabled and now trying to enable PCA. Right now both configuration don't work with each other");
72 PCAObj = std::make_unique<PCAHandler>();
74 if(FirstPCAdpar == -999 || LastPCAdpar == -999){
75 if(FirstPCAdpar == -999 && LastPCAdpar == -999){
80 MACH3LOG_ERROR(
"You must either leave FirstPCAdpar and LastPCAdpar at -999 or set them both to something");
95 TFile *infile =
new TFile(file.c_str(),
"READ");
96 if (infile->IsZombie()) {
97 MACH3LOG_ERROR(
"Could not open input covariance ROOT file {} !!!", file);
102 TMatrixDSym *CovMat =
static_cast<TMatrixDSym*
>(infile->Get(name.c_str()));
105 MACH3LOG_ERROR(
"Could not find covariance matrix name {} in file {}", name, file);
106 MACH3LOG_ERROR(
"Are you really sure {} exists in the file?", name);
116 for (
int iThread = 0; iThread < nThreads; iThread++) {
129 for (
int j = 0; j <
_fNumPar; j++) {
155 _fYAMLDoc[
"Systematics"] = YAML::Node(YAML::NodeType::Sequence);
156 for(
unsigned int i = 0; i < YAMLFile.size(); i++)
159 for (
const auto& item : YAMLDocTemp[
"Systematics"]) {
160 _fYAMLDoc[
"Systematics"].push_back(item);
168 for (
int iThread = 0; iThread < nThreads; iThread++) {
182 for (
int j = 0; j <
_fNumPar; j++) {
188 TMatrixDSym* _fCovMatrix =
new TMatrixDSym(
_fNumPar);
190 std::vector<std::map<std::string,double>> Correlations(
_fNumPar);
191 std::map<std::string, int> CorrNamesMap;
196 for (
auto const ¶m :
_fYAMLDoc[
"Systematics"])
198 _fFancyNames[i] = Get<std::string>(param[
"Systematic"][
"Names"][
"FancyName"], __FILE__ , __LINE__);
199 _fPreFitValue[i] = Get<double>(param[
"Systematic"][
"ParameterValues"][
"PreFitValue"], __FILE__ , __LINE__);
200 _fIndivStepScale[i] = Get<double>(param[
"Systematic"][
"StepScale"][
"MCMC"], __FILE__ , __LINE__);
201 _fError[i] = Get<double>(param[
"Systematic"][
"Error"], __FILE__ , __LINE__);
202 _fSampleNames[i] = GetFromManager<std::vector<std::string>>(param[
"Systematic"][
"SampleNames"], {}, __FILE__, __LINE__);
208 auto TempBoundsVec =
GetBounds(param[
"Systematic"][
"ParameterBounds"]);
213 _fFlatPrior[i] = GetFromManager<bool>(param[
"Systematic"][
"FlatPrior"],
false, __FILE__ , __LINE__);
216 if(GetFromManager<bool>(param[
"Systematic"][
"FixParam"],
false, __FILE__ , __LINE__)) {
220 if(param[
"Systematic"][
"SpecialProposal"]) {
225 CorrNamesMap[param[
"Systematic"][
"Names"][
"FancyName"].as<std::string>()]=i;
228 if(param[
"Systematic"][
"Correlations"]) {
229 for(
unsigned int Corr_i = 0; Corr_i < param[
"Systematic"][
"Correlations"].size(); ++Corr_i){
230 for (YAML::const_iterator it = param[
"Systematic"][
"Correlations"][Corr_i].begin(); it!=param[
"Systematic"][
"Correlations"][Corr_i].end();++it) {
231 Correlations[i][it->first.as<std::string>()] = it->second.as<
double>();
246 for (
auto const& pair : Correlations[j]) {
247 auto const& key = pair.first;
248 auto const& val = pair.second;
251 if (CorrNamesMap.find(key) != CorrNamesMap.end()) {
252 index = CorrNamesMap[key];
254 MACH3LOG_ERROR(
"Parameter {} not in list! Check your spelling?", key);
259 if(Correlations[index].find(
_fFancyNames[j]) != Correlations[index].end()) {
262 if(std::abs(Corr2 - Corr1) > FLT_EPSILON) {
271 (*_fCovMatrix)(j, index)= (*_fCovMatrix)(index, j) = Corr1*
_fError[j]*
_fError[index];
284 Tunes = std::make_unique<ParameterTunes>(
_fYAMLDoc[
"Systematics"]);
287 for(
const auto &file : YAMLFile){
300 bool CircEnabled =
false;
301 bool FlipEnabled =
false;
303 if (param[
"CircularBounds"]) {
307 if (param[
"FlipParameter"]) {
311 if (!CircEnabled && !FlipEnabled) {
319 MACH3LOG_INFO(
"Enabling CircularBounds for parameter {} with range [{}, {}]",
325 MACH3LOG_ERROR(
"Circular bounds [{}, {}] for parameter {} exceed physical bounds [{}, {}]",
335 FlipParameterPoint.push_back(Get<double>(param[
"FlipParameter"], __FILE__, __LINE__));
336 MACH3LOG_INFO(
"Enabling Flipping for parameter {} with value {}",
341 if (CircEnabled && FlipEnabled) {
343 MACH3LOG_ERROR(
"FlipParameter value {} for parameter {} is outside the CircularBounds [{}, {}]",
354 const double min_flip = std::min(flipped_low, flipped_high);
355 const double max_flip = std::max(flipped_low, flipped_high);
357 if (min_flip < low || max_flip > high) {
358 MACH3LOG_ERROR(
"Flipping about point {} for parameter {} would leave circular bounds [{}, {}]",
369 if (cov ==
nullptr) {
370 MACH3LOG_ERROR(
"Could not find covariance matrix you provided to {}", __func__ );
375 invCovMatrix =
static_cast<TMatrixDSym *
>(cov->Clone());
391 _fNames = std::vector<std::string>(SizeVec);
394 _fError = std::vector<double>(SizeVec);
395 _fCurrVal = std::vector<double>(SizeVec);
396 _fPropVal = std::vector<double>(SizeVec);
398 _fUpBound = std::vector<double>(SizeVec);
408 for(
int i = 0; i < SizeVec; i++) {
443 std::vector<double> props(
_fNumPar);
461 if (__builtin_expect(!
pca, 1)) {
463 #pragma omp parallel for
465 for (
int i = 0; i <
_fNumPar; ++i) {
480 MACH3LOG_WARN(
"Tried {} times to throw parameter {} but failed",
throws, i);
510 for (
int i = 0; i <
_fNumPar; ++i) {
516 const double sigma = sqrt((*
covMatrix)(i,i));
517 double throwrange = sigma;
518 if (paramrange < sigma) throwrange = paramrange;
525 MACH3LOG_WARN(
"Tried {} times to throw parameter {} but failed",
throws, i);
603 #pragma omp parallel for
605 for (
int i = 0; i <
_fNumPar; ++i) {
618 #pragma omp parallel for
620 for (
int i = 0; i <
PCAObj->GetNumberPCAedParameters(); ++i)
623 if (
PCAObj->IsParameterFixedPCA(i)) {
642 #pragma omp parallel for
644 for (
int i = 0; i <
_fNumPar; ++i) {
660 #pragma omp parallel for
662 for (
int i = 0; i <
_fNumPar; ++i) {
676 _fPropVal[index] = LowBound + std::fmod(
_fPropVal[index] - UpBound, UpBound - LowBound);
677 }
else if (
_fPropVal[index] < LowBound) {
678 _fPropVal[index] = UpBound - std::fmod(LowBound -
_fPropVal[index], UpBound - LowBound);
700 for (
int i = 0; i <
_fNumPar; i++) {
719 for (
int i = 0; i <
_fNumPar; i++) {
733 for (
int i = 0; i <
_fNumPar; i++) {
747 MACH3LOG_INFO(
"{:<30} {:<10} {:<10} {:<10}",
"Name",
"Prior",
"Current",
"Proposed");
748 for (
int i = 0; i <
_fNumPar; ++i) {
762 #pragma omp parallel for reduction(+:logL)
773 for (
int j = 0; j <= i; ++j) {
776 double scale = (i != j) ? 1. : 0.5;
789 #pragma omp parallel for reduction(+:NOutside)
817 for (
int i = 0; i <
_fNumPar; i++) {
822 if (pars.size() !=
size_t(
_fNumPar)) {
826 int parsSize = int(pars.size());
827 for (
int i = 0; i < parsSize; i++) {
829 if(std::isnan(pars[i])) {
840 PCAObj->TransferToParam();
848 for (
int i = 0; i <
_fNumPar; ++i) {
858 for (
int i = 0; i <
_fNumPar; ++i) {
868 MACH3LOG_ERROR(
"You are trying so set StepScale to 0 or negative this will not work");
874 const double SuggestedScale = 2.38*2.38/
_fNumPar;
875 if(std::fabs(scale - SuggestedScale)/SuggestedScale > 1) {
876 MACH3LOG_WARN(
"Defined Global StepScale is {}, while suggested suggested {}", scale, SuggestedScale);
902 PCAObj->ToggleFixAllParameters();
932 MACH3LOG_WARN(
"I couldn't find parameter with name {}, therefore will not fix it", name);
943 MACH3LOG_WARN(
"I couldn't find parameter with name {}, therefore don't know if it fixed", name);
969 if (
int(stepscale.size()) !=
_fNumPar)
971 MACH3LOG_WARN(
"Stepscale vector not equal to number of parameters. Quitting..");
972 MACH3LOG_WARN(
"Size of argument vector: {}", stepscale.size());
977 for (
int iParam = 0 ; iParam <
_fNumPar; iParam++) {
986 MACH3LOG_INFO(
"============================================================");
988 for (
int iParam = 0; iParam <
_fNumPar; iParam++) {
991 MACH3LOG_INFO(
"============================================================");
1009 std::vector<double> stepScales(
_fNumPar);
1010 for (
int i = 0; i <
_fNumPar; i++) {
1021 if (cov ==
nullptr) {
1022 MACH3LOG_ERROR(
"Could not find covariance matrix you provided to {}", __func__);
1026 if (
covMatrix->GetNrows() != cov->GetNrows()) {
1027 MACH3LOG_ERROR(
"Matrix given for throw Matrix is not the same size as the covariance matrix stored in object!");
1033 throwMatrix =
static_cast<TMatrixDSym*
>(cov->Clone());
1041 #pragma omp parallel for collapse(2)
1065 MACH3LOG_ERROR(
"PCA has been enabled and now trying to enable Adaption. Right now both configuration don't work with each other");
1069 MACH3LOG_ERROR(
"Adaptive Handler has already been initialise can't do it again so skipping.");
1072 AdaptiveHandler = std::make_unique<adaptive_mcmc::AdaptiveMCMCHandler>();
1075 if(!success)
return;
1080 if(!GetFromManager<bool>(adapt_manager[
"AdaptionOptions"][
"Covariance"][
matrixName][
"UseExternalMatrix"],
false, __FILE__ , __LINE__)) {
1089 auto external_file_name = GetFromManager<std::string>(adapt_manager[
"AdaptionOptions"][
"Covariance"][
matrixName][
"ExternalMatrixFileName"],
"", __FILE__ , __LINE__);
1090 auto external_matrix_name = GetFromManager<std::string>(adapt_manager[
"AdaptionOptions"][
"Covariance"][
matrixName][
"ExternalMatrixName"],
"", __FILE__ , __LINE__);
1091 auto external_mean_name = GetFromManager<std::string>(adapt_manager[
"AdaptionOptions"][
"Covariance"][
matrixName][
"ExternalMeansName"],
"", __FILE__ , __LINE__);
1097 MACH3LOG_INFO(
"Successfully Set External Throw Matrix Stored in {}", external_file_name);
1122 TMatrixDSym* update_matrix =
static_cast<TMatrixDSym*
>(
AdaptiveHandler->GetAdaptiveCovariance()->Clone());
1144 TMatrixDSym* cov_trans = cov;
1146 TMatrixDSym cov_sym = 0.5*(*cov+*cov_trans);
1149 TDecompSVD cov_sym_svd=TDecompSVD(cov_sym);
1150 if(!cov_sym_svd.Decompose()){
1155 TMatrixD cov_sym_v = cov_sym_svd.GetV();
1156 TMatrixD cov_sym_vt = cov_sym_v;
1159 TVectorD cov_sym_sigvect = cov_sym_svd.GetSig();
1161 const Int_t nCols = cov_sym_v.GetNcols();
1162 TMatrixDSym cov_sym_sig(nCols);
1163 TMatrixDDiag cov_sym_sig_diag(cov_sym_sig);
1164 cov_sym_sig_diag=cov_sym_sigvect;
1167 TMatrixDSym cov_sym_polar = cov_sym_sig.SimilarityT(cov_sym_vt);
1170 TMatrixDSym cov_closest_approx = 0.5*(cov_sym+cov_sym_polar);
1175 *cov = cov_closest_approx;
1185 hMatrix->SetDirectory(
nullptr);
1188 hMatrix->SetBinContent(i+1, i+1, 1.);
1194 #pragma omp parallel for
1198 for(
int j = 0; j <= i; j++)
1201 hMatrix->SetBinContent(i+1, j+1, Corr);
1202 hMatrix->SetBinContent(j+1, i+1, Corr);
1222 for (YAML::Node param : copyNode[
"Systematics"])
1229 std::ofstream fout(
"Modified_Matrix.yaml");
1241 std::string SampleNameCopy = SampleName;
1242 std::transform(SampleNameCopy.begin(), SampleNameCopy.end(), SampleNameCopy.begin(), ::tolower);
1245 if (SampleNameCopy.find(
'*') != std::string::npos) {
1246 MACH3LOG_ERROR(
"Wildcards ('*') are not supported in sample name: '{}'", SampleName);
1250 bool Applies =
false;
1252 for (
size_t i = 0; i <
_fSampleNames[SystIndex].size(); i++) {
1255 std::transform(pattern.begin(), pattern.end(), pattern.begin(), ::tolower);
1258 std::string regexPattern =
"^" + std::regex_replace(pattern, std::regex(
"\\*"),
".*") +
"$";
1260 std::regex regex(regexPattern);
1261 if (std::regex_match(SampleNameCopy, regex)) {
1265 }
catch (
const std::regex_error& e) {
1277 if(
Tunes ==
nullptr) {
1278 MACH3LOG_ERROR(
"Tunes haven't been initialised, which are being loaded from YAML, have you used some deprecated constructor");
1281 auto Values =
Tunes->GetTune(TuneName);
1296 std::vector<double>& BranchValues,
1304 if (!PosteriorFile->GetBranch(
BranchNames[i].c_str())) {
1308 PosteriorFile->SetBranchStatus(
BranchNames[i].c_str(),
true);
1309 PosteriorFile->SetBranchAddress(
BranchNames[i].c_str(), &BranchValues[i]);
#define _noexcept_
KS: noexcept can help with performance but is terrible for debugging, this is meant to help easy way ...
std::vector< TString > BranchNames
#define MACH3LOG_CRITICAL
Type Get(const YAML::Node &node, const std::string File, const int Line)
Get content of config file.
#define M3OpenConfig(filename)
Macro to simplify calling LoadYaml with file and line info.
#define GetBounds(filename)
Custom exception class for MaCh3 errors.
std::vector< int > CircularBoundsIndex
Indices of parameters with circular bounds.
void ToggleFixParameter(const int i)
fix parameter at prior values
bool use_adaptive
Are we using AMCMC?
virtual void ProposeStep()
Generate a new proposed state.
double * randParams
Random number taken from gaussian around prior error used for corr_throw.
double ** throwMatrixCholDecomp
Throw matrix that is being used in the fit, much faster as TMatrixDSym cache miss.
std::unique_ptr< adaptive_mcmc::AdaptiveMCMCHandler > AdaptiveHandler
Struct containing information about adaption.
virtual ~ParameterHandlerBase()
Destructor.
TMatrixDSym * invCovMatrix
The inverse covariance matrix.
std::vector< int > FlipParameterIndex
Indices of parameters with flip symmetry.
bool AppliesToSample(const int SystIndex, const std::string &SampleName) const
Check if parameter is affecting given sample name.
void AcceptStep() _noexcept_
Accepted this step.
void ThrowParProp(const double mag=1.)
Throw the proposed parameter by mag sigma. Should really just have the user specify this throw by hav...
std::unique_ptr< ParameterTunes > Tunes
Struct containing information about adaption.
void InitialiseAdaption(const YAML::Node &adapt_manager)
Initialise adaptive MCMC.
TMatrixDSym * throwMatrix
Matrix which we use for step proposal before Cholesky decomposition (not actually used for step propo...
void ThrowParCurr(const double mag=1.)
Helper function to throw the current parameter by mag sigma. Can study bias in MCMC with this; put di...
double _fGlobalStepScale
Global step scale applied to all params in this class.
void ReserveMemory(const int size)
Initialise vectors with parameters information.
std::vector< std::string > _fFancyNames
Fancy name for example rather than xsec_0 it is MAQE, useful for human reading.
bool doSpecialStepProposal
Check if any of special step proposal were enabled.
std::vector< bool > _fFlatPrior
Whether to apply flat prior or not.
void ThrowParameters()
Throw the parameters according to the covariance matrix. This shouldn't be used in MCMC code ase it c...
void Init(const std::string &name, const std::string &file)
Initialisation of the class using matrix from root file.
std::string matrixName
Name of cov matrix.
void MakeClosestPosDef(TMatrixDSym *cov)
HW: Finds closest possible positive definite matrix in Frobenius Norm ||.||_frob Where ||X||_frob=sqr...
void RandomConfiguration()
Randomly throw the parameters in their 1 sigma range.
std::vector< double > FlipParameterPoint
Central points around which parameters are flipped.
void UpdateAdaptiveCovariance()
Method to update adaptive MCMC .
std::vector< double > _fError
Prior error on the parameter.
void PrintNominal() const
Print prior value for every parameter.
YAML::Node _fYAMLDoc
Stores config describing systematics.
bool IsParameterFixed(const int i) const
Is parameter fixed or not.
void UpdateThrowMatrix(TMatrixDSym *cov)
void CircularParBounds(const int i, const double LowBound, const double UpBound)
HW :: This method is a tad hacky but modular arithmetic gives me a headache.
void SaveUpdatedMatrixConfig()
KS: After step scale, prefit etc. value were modified save this modified config.
void ResetIndivStepScale()
Adaptive Step Tuning Stuff.
std::unique_ptr< PCAHandler > PCAObj
Struct containing information about PCA.
int _fNumPar
Number of systematic parameters.
double CalcLikelihood() const _noexcept_
Calc penalty term based on inverted covariance matrix.
void FlipParameterValue(const int index, const double FlipPoint)
KS: Flip parameter around given value, for example mass ordering around 0.
void ConstructPCA(const double eigen_threshold, int FirstPCAdpar, int LastPCAdpar)
CW: Calculate eigen values, prepare transition matrices and remove param based on defined threshold.
std::vector< double > _fLowBound
Lowest physical bound, parameter will not be able to go beyond it.
std::vector< double > _fCurrVal
Current value of the parameter.
void PrintNominalCurrProp() const
Print prior, current and proposed value for each parameter.
ParameterHandlerBase(const std::vector< std::string > &YAMLFile, std::string name, double threshold=-1, int FirstPCAdpar=-999, int LastPCAdpar=-999)
ETA - constructor for a YAML file.
std::vector< std::vector< double > > InvertCovMatrix
KS: Same as above but much faster as TMatrixDSym cache miss.
TMatrixDSym * covMatrix
The covariance matrix.
std::vector< double > _fPreFitValue
Parameter value dictated by the prior model. Based on it penalty term is calculated.
void Randomize() _noexcept_
"Randomize" the parameters in the covariance class for the proposed step. Used the proposal kernel an...
void PrintIndivStepScale() const
Print step scale for each parameter.
std::vector< std::string > _fNames
ETA _fNames is set automatically in the covariance class to be something like xsec_i,...
std::vector< std::pair< double, double > > CircularBoundsValues
Circular bounds for each parameter (lower, upper)
void EnableSpecialProposal(const YAML::Node ¶m, const int Index)
Enable special proposal.
double * corr_throw
Result of multiplication of Cholesky matrix and randParams.
void MatchMaCh3OutputBranches(TTree *PosteriorFile, std::vector< double > &BranchValues, std::vector< std::string > &BranchNames)
Matches branches in a TTree to parameters in a systematic handler.
std::vector< double > _fUpBound
Upper physical bound, parameter will not be able to go beyond it.
bool pca
perform PCA or not
std::vector< double > _fIndivStepScale
Individual step scale used by MCMC algorithm.
std::vector< std::unique_ptr< TRandom3 > > random_number
KS: Set Random numbers for each thread so each thread has different seed.
void MakePosDef(TMatrixDSym *cov=nullptr)
Make matrix positive definite by adding small values to diagonal, necessary for inverting matrix.
void SpecialStepProposal()
Perform Special Step Proposal.
int PrintLength
KS: This is used when printing parameters, sometimes we have super long parameters name,...
void CorrelateSteps() _noexcept_
Use Cholesky throw matrix for better step proposal.
std::vector< double > _fPropVal
Proposed value of the parameter.
std::vector< std::vector< std::string > > _fSampleNames
Tells to which samples object param should be applied.
int CheckBounds() const _noexcept_
Check if parameters were proposed outside physical boundary.
void ToggleFixAllParameters()
fix parameters at prior values
int GetNumParams() const
Get total number of parameters.
std::string GetParName(const int i) const
Get name of parameter.
std::vector< double > GetProposed() const
Get vector of all proposed parameter values.
virtual double GetLikelihood()
Return CalcLikelihood if some params were thrown out of boundary return LARGE_LOGL
int GetParIndex(const std::string &name) const
Get index based on name.
std::string GetParFancyName(const int i) const
Get fancy name of the Parameter.
TH2D * GetCorrelationMatrix()
KS: Convert covariance matrix to correlation matrix and return TH2D which can be used for fancy plott...
std::string GetName() const
Get name of covariance.
double GetParInit(const int i) const
Get prior parameter value.
double GetDiagonalError(const int i) const
Get diagonal error for ith parameter.
void SetName(const std::string &name)
Set matrix name.
void SetStepScale(const double scale, const bool verbose=true)
Set global step scale for covariance object.
void SetCovMatrix(TMatrixDSym *cov)
Set covariance matrix.
void SetFlatPrior(const int i, const bool eL)
Set if parameter should have flat prior or not.
void SetThrowMatrix(TMatrixDSym *cov)
Use new throw matrix, used in adaptive MCMC.
void SetParameters(const std::vector< double > &pars={})
Set parameter values using vector, it has to have same size as covariance class.
void SetBranches(TTree &tree, const bool SaveProposal=false)
set branches for output file
void SetParCurrProp(const int i, const double val)
Set current parameter value.
void SetSingleParameter(const int parNo, const double parVal)
Set value of single param to a given value.
void SetPar(const int i, const double val)
Set all the covariance matrix parameters to a user-defined value.
void SetIndivStepScale(const int ParameterIndex, const double StepScale)
DB Function to set fIndivStepScale from a vector (Can be used from execs and inside covariance constr...
void SetTune(const std::string &TuneName)
KS: Set proposed parameter values vector to be base on tune values, for example set proposed values t...
constexpr static const double _LARGE_LOGL_
Large Likelihood is used it parameter go out of physical boundary, this indicates in MCMC that such s...
void MatrixVectorMulti(double *_restrict_ VecMulti, double **_restrict_ matrix, const double *_restrict_ vector, const int n)
KS: Custom function to perform multiplication of matrix and vector with multithreading.
int GetThreadIndex()
thread index inside parallel loop
double MatrixVectorMultiSingle(double **_restrict_ matrix, const double *_restrict_ vector, const int Length, const int i)
KS: Custom function to perform multiplication of matrix and single element which is thread safe.
void MakeMatrixPosDef(TMatrixDSym *cov)
Makes sure that matrix is positive-definite by adding a small number to on-diagonal elements.
constexpr static const int _BAD_INT_
Default value used for int initialisation.
int GetNThreads()
number of threads which we need for example for TRandom3
std::vector< std::vector< double > > GetCholeskyDecomposedMatrix(const TMatrixDSym &matrix, const std::string &matrixName)
Computes Cholesky decomposition of a symmetric positive definite matrix using custom function which c...
std::string FormatDouble(const double value, const int precision)
Convert double into string for precision, useful for playing with yaml if you don't want to have in c...