MaCh3  2.4.2
Reference Guide
MCMCProcessor.h
Go to the documentation of this file.
1 #pragma once
2 
3 // C++ includes
4 #include <complex>
5 #include <cstdio>
6 
7 // MaCh3 includes
11 
13 // ROOT includes
14 #include "TFile.h"
15 #include "TBranch.h"
16 #include "TCanvas.h"
17 #include "TLine.h"
18 #include "TLegend.h"
19 #include "TString.h"
20 #include "TGraphErrors.h"
21 #include "TVectorD.h"
22 #include "TColor.h"
23 #include "TStyle.h"
24 #include "TStopwatch.h"
25 #include "TText.h"
26 #include "TGaxis.h"
27 #include "TTree.h"
28 #include "TROOT.h"
29 #include "TKey.h"
30 #include "TRandom3.h"
31 #include "TGraphPolar.h"
32 #include "TCandle.h"
33 #include "TMath.h"
34 #include "TMatrixDSymEigen.h"
36 
37 
38 //KS: Joy of forward declaration https://gieseanw.wordpress.com/2018/02/25/the-joys-of-forward-declarations-results-from-the-real-world/
39 class TChain;
40 class TF1;
41 class MCMCProcessorGPU;
42 
46  kXSecPar = 0,
47  kNDPar = 1,
48  kFDDetPar = 2,
49 
50  kNParameterEnum = 3 //KS: keep it at the end to keep track of all parameters
51 };
52 
59  public:
62  MCMCProcessor(const std::string &InputFile);
64  virtual ~MCMCProcessor();
65 
67  void Initialise();
69  void MakePostfit(const std::map<std::string, std::pair<double, double>>& Edges = {});
72  void MakeCovariance();
74  void CacheSteps();
77  void MakeCovariance_MP(const bool Mute = false);
81  void MakeSubOptimality(const int NIntervals = 10);
82 
84  void Reset2DPosteriors();
85 
87  void DrawPostfit();
89  void MakeViolin();
94  void MakeCredibleIntervals(const std::vector<double>& CredibleIntervals = {0.99, 0.90, 0.68 },
95  const std::vector<Color_t>& CredibleIntervalsColours = {kCyan+4, kCyan-2, kCyan-10},
96  const bool CredibleInSigmas = false
97  );
99  void DrawCovariance();
101  void MakeCovarianceYAML(const std::string& OutputYAMLFile, const std::string& MeansMethod) const;
109  void MakeCredibleRegions(const std::vector<double>& CredibleRegions = {0.99, 0.90, 0.68},
110  const std::vector<Style_t>& CredibleRegionStyle = {kDashed, kSolid, kDotted},
111  const std::vector<Color_t>& CredibleRegionColor = {kGreen-3, kGreen-10, kGreen},
112  const bool CredibleInSigmas = false,
113  const bool Draw2DPosterior = true,
114  const bool DrawBestFit = true
115  );
124  void MakeTrianglePlot(const std::vector<std::string>& ParNames,
125  // 1D
126  const std::vector<double>& CredibleIntervals = {0.99, 0.90, 0.68 },
127  const std::vector<Color_t>& CredibleIntervalsColours = {kCyan+4, kCyan-2, kCyan-10},
128  //2D
129  const std::vector<double>& CredibleRegions = {0.99, 0.90, 0.68},
130  const std::vector<Style_t>& CredibleRegionStyle = {kDashed, kSolid, kDotted},
131  const std::vector<Color_t>& CredibleRegionColor = {kGreen-3, kGreen-10, kGreen},
132  // Other
133  const bool CredibleInSigmas = false
134  );
135 
140  void CheckCredibleIntervalsOrder(const std::vector<double>& CredibleIntervals, const std::vector<Color_t>& CredibleIntervalsColours) const;
141 
147  void CheckCredibleRegionsOrder(const std::vector<double>& CredibleRegions,
148  const std::vector<Style_t>& CredibleRegionStyle,
149  const std::vector<Color_t>& CredibleRegionColor);
150 
153  void GetPolarPlot(const std::vector<std::string>& ParNames);
154 
160  void GetBayesFactor(const std::vector<std::string>& ParName,
161  const std::vector<std::vector<double>>& Model1Bounds,
162  const std::vector<std::vector<double>>& Model2Bounds,
163  const std::vector<std::vector<std::string>>& ModelNames);
165  void GetSavageDickey(const std::vector<std::string>& ParName,
166  const std::vector<double>& EvaluationPoint,
167  const std::vector<std::vector<double>>& Bounds);
168 
174  void SavageDickeyPlot(std::unique_ptr<TH1D>& PriorHist,
175  std::unique_ptr<TH1D>& PosteriorHist,
176  const std::string& Title,
177  const double EvaluationPoint) const ;
178 
183  void ReweightPrior(const std::vector<std::string>& Names,
184  const std::vector<double>& NewCentral,
185  const std::vector<double>& NewError);
186 
187 
194  void SmearChain(const std::vector<std::string>& Names,
195  const std::vector<double>& Error,
196  const bool& SaveBranch) const;
197 
201  void ParameterEvolution(const std::vector<std::string>& Names,
202  const std::vector<int>& NIntervals);
203 
206  inline void ThinMCMC(const int ThinningCut) const { ThinningMCMC(MCMCFile+".root", ThinningCut); };
207 
209  void DiagMCMC();
210 
211  // Get the number of parameters
213  inline int GetNParams() const { return nDraw; };
214  inline int GetNXSec() const { return nParam[kXSecPar]; };
215  inline int GetNND() const { return nParam[kNDPar]; };
216  inline int GetNFD() const { return nParam[kFDDetPar]; };
217 
219  YAML::Node GetCovConfig(const int i) const {return CovConfig.at(i); }
220 
222  int GetGroup(const std::string& name) const;
223 
226  inline TH1D* GetHpost(const int i) const { return hpost[i]; };
230  inline TH2D* GetHpost2D(const int i, const int j) const { return hpost2D[i][j]; };
232  inline TH2D* GetViolin() const { return hviolin.get(); };
234  inline TH2D* GetViolinPrior() const { return hviolin_prior.get(); };
235 
236  //Covariance getters
237  inline std::vector<std::string> GetXSecCov() const { return CovPos[kXSecPar]; };
238  inline std::string GetNDCov() const { return CovPos[kNDPar].back(); };
239  inline std::string GetFDCov() const { return CovPos[kFDDetPar].back(); };
240 
242  void GetPostfit(TVectorD *&Central, TVectorD *&Errors, TVectorD *&Central_Gauss, TVectorD *&Errors_Gauss, TVectorD *&Peaks);
246  void GetCovariance(TMatrixDSym *&Cov, TMatrixDSym *&Corr);
248  void GetPostfit_Ind(TVectorD *&Central, TVectorD *&Errors, TVectorD *&Peaks, ParameterEnum kParam);
249 
251  const std::vector<TString>& GetBranchNames() const { return BranchNames;};
253  void GetNthParameter(const int param, double &Prior, double &PriorError, TString &Title) const;
255  int GetParamIndexFromName(const std::string& Name) const;
257  inline Long64_t GetnEntries(){return nEntries;};
259  inline Long64_t GetnSteps(){return nSteps;};
261  inline void SetNBins(const int NewBins) {nBins = NewBins;};
262 
265  inline void SetEntries(const int NewEntries) {
266  if (NewEntries > nEntries) {
267  MACH3LOG_ERROR("Cannot increase entries from {} to {}. Only decreasing is allowed.", nEntries, NewEntries);
268  throw MaCh3Exception(__FILE__, __LINE__);
269  }
270  if (NewEntries <= 0) {
271  MACH3LOG_ERROR("Entries cannot be below 0, but {} was passed.", NewEntries);
272  throw MaCh3Exception(__FILE__, __LINE__);
273  }
274 
275  if (static_cast<int>(BurnInCut) > NewEntries) {
276  MACH3LOG_ERROR("BurnInCut ({}) is larger than NewEntries ({})", BurnInCut, NewEntries);
277  throw MaCh3Exception(__FILE__, __LINE__);
278  }
279 
280  MACH3LOG_INFO("Setting entries to {} from {}.", NewEntries, nEntries);
281  MACH3LOG_WARN("This may behave not as expected when using merged multiple chains");
282  nEntries = NewEntries;
283  }
286  void SetStepCut(const std::string& Cuts);
289  void SetStepCut(const int Cuts);
291  void CheckStepCut() const;
292 
295  inline void SetPlotRelativeToPrior(const bool PlotOrNot){plotRelativeToPrior = PlotOrNot; };
297  inline void SetPrintToPDF(const bool PlotOrNot){printToPDF = PlotOrNot; };
299  inline void SetPlotErrorForFlatPrior(const bool PlotOrNot){PlotFlatPrior = PlotOrNot; };
300  inline void SetPlotBinValue(const bool PlotOrNot){plotBinValue = PlotOrNot; };
301  inline void SetFancyNames(const bool PlotOrNot){FancyPlotNames = PlotOrNot; };
303  inline void SetSmoothing(const bool PlotOrNot){ApplySmoothing = PlotOrNot; };
306  inline void SetPost2DPlotThreshold(const double Threshold){Post2DPlotThreshold = Threshold; };
308  inline void SetUseFFTAutoCorrelation(const bool useFFT){useFFTAutoCorrelation = useFFT; };
309 
311  inline void SetExcludedTypes(std::vector<std::string> Name){ExcludedTypes = Name; };
312  inline void SetExcludedNames(std::vector<std::string> Name){ExcludedNames = Name; };
313  inline void SetExcludedGroups(std::vector<std::string> Name){ExcludedGroups = Name; };
314 
317  inline void SetnBatches(const int Batches){nBatches = Batches; };
318  inline void SetnLags(const int nLags){AutoCorrLag = nLags; };
319 
321  inline void SetOutputSuffix(const std::string Suffix){OutputSuffix = Suffix; };
323  inline void SetPosterior1DCut(const std::string Cut){Posterior1DCut = Cut; };
324 
325  protected:
327  inline std::unique_ptr<TH1D> MakePrefit();
329  inline void MakeOutputFile();
331  inline void DrawCorrelations1D();
335  inline void DrawCorrelationsGroup(const std::unique_ptr<TH2D>& CorrMatrix) const;
337  inline void ReadInputCov();
339  inline void ReadInputCovLegacy();
341  inline void FindInputFiles();
343  inline void FindInputFilesLegacy();
345  inline void ReadModelFile();
347  virtual void LoadAdditionalInfo() {};
349  inline void ReadNDFile();
351  inline void ReadFDFile();
353  inline void PrintInfo() const;
354 
356  inline void ScanInput();
358  inline void ScanParameterOrder();
360  inline void SetupOutput();
361 
362  // MCMC Diagnostic
364  inline void PrepareDiagMCMC();
366  std::vector <double> GetParameterSums();
368  inline void ParamTraces();
370  inline void AutoCorrelation();
373  inline void AutoCorrelation_FFT();
384  inline void CalculateESS(const int nLags, const std::vector<std::vector<double>>& LagL);
388  inline void BatchedAnalysis();
390  inline void BatchedMeans();
394  inline void GewekeDiagnostic();
396  inline void AcceptanceProbabilities();
400  inline void PowerSpectrumAnalysis();
401 
403  std::vector<double> GetMargins(const std::unique_ptr<TCanvas>& Canv) const;
405  void SetMargins(std::unique_ptr<TCanvas>& Canv, const std::vector<double>& margins);
411  void SetTLineStyle(TLine* Line, const Color_t Colour, const Width_t Width, const ELineStyle Style) const;
415  void SetLegendStyle(TLegend* Legend, const double size) const;
416 
418  std::string MCMCFile;
420  std::string OutputSuffix;
422  std::vector<std::vector<std::string>> CovPos;
424  std::vector<std::string> CovNamePos;
426  std::vector<YAML::Node> CovConfig;
427 
429  TChain *Chain;
431  std::string StepCut;
433  std::string Posterior1DCut;
435  unsigned int UpperCut;
437  unsigned int BurnInCut;
441  int nEntries;
443  int nSteps;
449  int nDraw;
450 
451  //Name of all branches as well as branches we don't want to include in the analysis
452  std::vector<TString> BranchNames;
453  std::vector<std::string> ExcludedTypes;
454  std::vector<std::string> ExcludedNames;
455  std::vector<std::string> ExcludedGroups;
456 
458  std::vector<bool> IamVaried;
460  std::vector<std::vector<TString>> ParamNames;
462  std::vector<std::vector<double>> ParamCentral;
464  std::vector<std::vector<double>> ParamErrors;
466  std::vector<std::vector<bool>> ParamFlat;
468  std::vector<int> nParam;
470  std::vector<ParameterEnum> ParamType;
473  std::vector<int> ParamTypeStartPos;
474  // KS: For example flux or detector within matrix
475  std::vector<std::string> ParameterGroup;
476 
478  std::vector<TString> SampleName_v;
480  std::vector<TString> SystName_v;
481 
483  std::string OutputName;
485  TString CanvasName;
486 
489 
490  //Even more flags
507 
508  std::vector<int> NDSamplesBins;
509  std::vector<std::string> NDSamplesNames;
510 
512  std::unique_ptr<TF1> Gauss;
513 
515  TFile *OutputFile;
516 
518  std::unique_ptr<TCanvas> Posterior;
519 
520  //Vector of best fit points and errors obtained with different methods
522  TVectorD *Central_Value;
524  TVectorD *Means;
526  TVectorD *Errors;
528  TVectorD *Means_Gauss;
530  TVectorD *Errors_Gauss;
532  TVectorD *Means_HPD;
534  TVectorD *Errors_HPD;
539 
541  TMatrixDSym *Covariance;
543  TMatrixDSym *Correlation;
544 
546  std::vector<TH1D*> hpost;
548  std::vector<std::vector<TH2D*>> hpost2D;
550  std::unique_ptr<TH2D> hviolin;
552  std::unique_ptr<TH2D> hviolin_prior;
553 
557  unsigned int* StepNumber;
558 
560  int nBins;
562  double DrawRange;
563 
565  bool CacheMCMC;
568 
569  //Number of batches and LagL used in MCMC diagnostic
571  int nBatches;
574 
576  double **BatchedAverages;
577 
579  double **SampleValues;
581  double **SystValues;
582 
584  double *AccProbValues;
587 
591  std::string ReweightName;
593  double* WeightValue;
594 
595  //Only if GPU is enabled
596  #ifdef MaCh3_CUDA
598  void PrepareGPU_AutoCorr(const int nLags, const std::vector<double>& ParamSums, float*& ParStep_cpu,
599  float*& NumeratorSum_cpu, float*& ParamSums_cpu, float*& DenomSum_cpu);
600  std::unique_ptr<MCMCProcessorGPU> GPUProcessor;
601  #endif
602 };
#define _MaCh3_Safe_Include_Start_
KS: Avoiding warning checking for headers.
Definition: Core.h:126
#define _MaCh3_Safe_Include_End_
KS: Restore warning checking after including external headers.
Definition: Core.h:140
ParameterEnum
Definition: MCMCProcessor.h:45
@ kNDPar
Definition: MCMCProcessor.h:47
@ kXSecPar
Definition: MCMCProcessor.h:46
@ kNParameterEnum
Definition: MCMCProcessor.h:50
@ kFDDetPar
Definition: MCMCProcessor.h:48
#define MACH3LOG_ERROR
Definition: MaCh3Logger.h:37
#define MACH3LOG_INFO
Definition: MaCh3Logger.h:35
#define MACH3LOG_WARN
Definition: MaCh3Logger.h:36
constexpr ELineStyle Style[NVars]
void ThinningMCMC(const std::string &FilePath, const int ThinningCut)
Thin MCMC Chain, to save space and maintain low autocorrelations.
Utility functions for statistical interpretations in MaCh3.
Class responsible for performing MCMC Processing with GPU.
Class responsible for processing MCMC chains, performing diagnostics, generating plots,...
Definition: MCMCProcessor.h:58
void ScanParameterOrder()
Scan order of params from a different groups.
int nBatches
Number of batches for Batched Mean.
void CheckStepCut() const
Check if step cut isn't larger than highest values of step in a chain.
void GewekeDiagnostic()
Geweke Diagnostic based on the methods described by Fang (2014) and Karlsbakk (2011)....
TMatrixDSym * Correlation
Posterior Correlation Matrix.
void MakeViolin()
Make and Draw Violin.
void GetNthParameter(const int param, double &Prior, double &PriorError, TString &Title) const
Get properties of parameter by passing it number.
void SetExcludedGroups(std::vector< std::string > Name)
void Reset2DPosteriors()
Reset 2D posteriors, in case we would like to calculate in again with different BurnInCut.
void SetExcludedNames(std::vector< std::string > Name)
void ThinMCMC(const int ThinningCut) const
Thin MCMC Chain, to save space and maintain low autocorrelations.
const std::vector< TString > & GetBranchNames() const
Get the vector of branch names from root file.
void PrintInfo() const
Print info like how many params have been loaded etc.
void SetnLags(const int nLags)
void MakeCredibleIntervals(const std::vector< double > &CredibleIntervals={0.99, 0.90, 0.68 }, const std::vector< Color_t > &CredibleIntervalsColours={kCyan+4, kCyan-2, kCyan-10}, const bool CredibleInSigmas=false)
Make and Draw Credible intervals.
void ReadModelFile()
Read the xsec file and get the input central values and errors.
std::vector< double > GetMargins(const std::unique_ptr< TCanvas > &Canv) const
Get TCanvas margins, to be able to reset them if particular function need different margins.
M3::float_t ** ParStep
Array holding values for all parameters.
std::unique_ptr< TF1 > Gauss
Gaussian fitter.
void Initialise()
Scan chain, what parameters we have and load information from covariance matrices.
MCMCProcessor(const std::string &InputFile)
Constructs an MCMCProcessor object with the specified input file and options.
double Post2DPlotThreshold
KS: Set Threshold when to plot 2D posterior as by default we get a LOT of plots.
void AcceptanceProbabilities()
Acceptance Probability.
double ** SampleValues
Holds the sample values.
void BatchedAnalysis()
Get the batched means variance estimation and variable indicating if number of batches is sensible .
void SetOutputSuffix(const std::string Suffix)
Sett output suffix, this way jobs using the same file will have different names.
void AutoCorrelation()
KS: Calculate autocorrelations supports both OpenMP and CUDA :)
TVectorD * Means_HPD
Vector with mean values using Highest Posterior Density.
std::vector< TString > SampleName_v
Vector of each systematic.
void GetBayesFactor(const std::vector< std::string > &ParName, const std::vector< std::vector< double >> &Model1Bounds, const std::vector< std::vector< double >> &Model2Bounds, const std::vector< std::vector< std::string >> &ModelNames)
Calculate Bayes factor for vector of params, and model boundaries.
double * WeightValue
Stores value of weight for each step.
std::vector< std::vector< double > > ParamCentral
Parameters central values which we are going to analyse.
std::vector< std::vector< double > > ParamErrors
Uncertainty on a single parameter.
void MakeTrianglePlot(const std::vector< std::string > &ParNames, const std::vector< double > &CredibleIntervals={0.99, 0.90, 0.68 }, const std::vector< Color_t > &CredibleIntervalsColours={kCyan+4, kCyan-2, kCyan-10}, const std::vector< double > &CredibleRegions={0.99, 0.90, 0.68}, const std::vector< Style_t > &CredibleRegionStyle={kDashed, kSolid, kDotted}, const std::vector< Color_t > &CredibleRegionColor={kGreen-3, kGreen-10, kGreen}, const bool CredibleInSigmas=false)
Make fancy triangle plot for selected parameters.
std::string OutputName
Name of output files.
std::unique_ptr< TH2D > hviolin_prior
Holds prior violin plot for all dials,.
std::vector< int > nParam
Number of parameters per type.
void SetExcludedTypes(std::vector< std::string > Name)
Setter related what parameters we want to exclude from analysis, for example if cross-section paramet...
int GetGroup(const std::string &name) const
Number of params from a given group, for example flux.
std::vector< std::string > CovNamePos
Covariance matrix name position.
double DrawRange
Drawrange for SetMaximum.
std::vector< std::vector< bool > > ParamFlat
Whether Param has flat prior or not.
void SetSmoothing(const bool PlotOrNot)
Set whether want to use smoothing for histograms using ROOT algorithm.
std::vector< YAML::Node > CovConfig
Covariance matrix config.
double ** SystValues
Holds the systs values.
virtual ~MCMCProcessor()
Destroys the MCMCProcessor object.
TVectorD * Errors
Vector with errors values using RMS.
double * AccProbBatchedAverages
Holds all accProb in batches.
void MakePostfit(const std::map< std::string, std::pair< double, double >> &Edges={})
Make 1D projection for each parameter and prepare structure.
bool useFFTAutoCorrelation
MJR: Use FFT-based autocorrelation algorithm (save time & resources)?
int GetParamIndexFromName(const std::string &Name) const
Get parameter number based on name.
void MakeCredibleRegions(const std::vector< double > &CredibleRegions={0.99, 0.90, 0.68}, const std::vector< Style_t > &CredibleRegionStyle={kDashed, kSolid, kDotted}, const std::vector< Color_t > &CredibleRegionColor={kGreen-3, kGreen-10, kGreen}, const bool CredibleInSigmas=false, const bool Draw2DPosterior=true, const bool DrawBestFit=true)
Make and Draw Credible Regions.
std::string StepCut
BurnIn Cuts.
void GetPostfit_Ind(TVectorD *&Central, TVectorD *&Errors, TVectorD *&Peaks, ParameterEnum kParam)
Or the individual post-fits.
void DrawCorrelations1D()
Draw 1D correlations which might be more helpful than looking at huge 2D Corr matrix.
void SetnBatches(const int Batches)
Set value of Nbatches used for batched mean, this need to be done earlier as batches are made when re...
int GetNFD() const
void SetEntries(const int NewEntries)
Set number of entries to make potentially MCMC Processing faster.
void GetPostfit(TVectorD *&Central, TVectorD *&Errors, TVectorD *&Central_Gauss, TVectorD *&Errors_Gauss, TVectorD *&Peaks)
Get the post-fit results (arithmetic and Gaussian)
TVectorD * Means_Gauss
Vector with mean values using Gaussian fit.
unsigned int * StepNumber
Step number for step, important if chains were merged.
int AutoCorrLag
LagL used in AutoCorrelation.
std::unique_ptr< TCanvas > Posterior
Fancy canvas used for our beautiful plots.
TFile * OutputFile
The output file.
void SetPosterior1DCut(const std::string Cut)
Allow to set addtional cuts based on ROOT TBrowser cut, for to only affect one mass ordering.
void ReadNDFile()
Read the ND cov file and get the input central values and errors.
TH1D * GetHpost(const int i) const
Get 1D posterior for a given parameter.
bool ApplySmoothing
Apply smoothing for 2D histos using root algorithm.
unsigned int UpperCut
KS: Used only for SubOptimality.
int nBins
Number of bins.
TChain * Chain
Main chain storing all steps etc.
std::string MCMCFile
Name of MCMC file.
void SetPlotRelativeToPrior(const bool PlotOrNot)
You can set relative to prior or relative to generated. It is advised to use relate to prior.
bool ReweightPosterior
Whether to apply reweighting weight or not.
TH2D * GetViolin() const
Get Violin plot for all parameters with posterior values.
void SetLegendStyle(TLegend *Legend, const double size) const
Configures the style of a TLegend object.
int GetNParams() const
Get total number of used parameters.
std::vector< std::string > ExcludedNames
std::unique_ptr< TH1D > MakePrefit()
Prepare prefit histogram for parameter overlay plot.
std::vector< TH1D * > hpost
Holds 1D Posterior Distributions.
YAML::Node GetCovConfig(const int i) const
Get Yaml config obtained from a Chain.
TVectorD * Errors_HPD_Negative
Vector with negative error (left hand side) values using Highest Posterior Density.
std::vector< std::vector< std::string > > CovPos
Covariance matrix file name position.
void DrawCorrelationsGroup(const std::unique_ptr< TH2D > &CorrMatrix) const
Produces correlation matrix but instead of giving name for each param it only give name for param gro...
Long64_t GetnEntries()
Get Number of entries that Chain has, for merged chains will not be the same Nsteps.
void SetFancyNames(const bool PlotOrNot)
void DiagMCMC()
KS: Perform MCMC diagnostic including Autocorrelation, Trace etc.
std::vector< std::string > ExcludedGroups
std::string Posterior1DCut
Cut used when making 1D Posterior distribution.
int nSampleHandlers
Number of sample PDF objects.
double * AccProbValues
Holds all accProb.
void FindInputFilesLegacy()
std::vector< double > GetParameterSums()
Computes the average of each parameter across all MCMC entries. Useful for autocorrelation.
void DrawCovariance()
Draw the post-fit covariances.
void SetMargins(std::unique_ptr< TCanvas > &Canv, const std::vector< double > &margins)
Set TCanvas margins to specified values.
void ParamTraces()
CW: Draw trace plots of the parameters i.e. parameter vs step.
void PrepareDiagMCMC()
CW: Prepare branches etc. for DiagMCMC.
std::vector< bool > IamVaried
Is the ith parameter varied.
TH2D * GetHpost2D(const int i, const int j) const
Get 2D posterior for a given parameter combination.
std::unique_ptr< TH2D > hviolin
Holds violin plot for all dials.
void SetPrintToPDF(const bool PlotOrNot)
Whether to dump all plots into PDF.
int nParameterHandlers
Number of covariance objects.
Long64_t GetnSteps()
Get Number of Steps that Chain has, for merged chains will not be the same nEntries.
int nDraw
Number of all parameters used in the analysis.
std::string OutputSuffix
Output file suffix useful when running over same file with different settings.
int GetNXSec() const
void SetNBins(const int NewBins)
Modify number of bins used for 1D and 2D Histograms.
void SetupOutput()
Prepare all objects used for output.
void MakeOutputFile()
prepare output root file and canvas to which we will save EVERYTHING
bool plotBinValue
If true it will print value on each bin of covariance matrix.
TVectorD * Errors_Gauss
Vector with error values using Gaussian fit.
void CheckCredibleIntervalsOrder(const std::vector< double > &CredibleIntervals, const std::vector< Color_t > &CredibleIntervalsColours) const
Checks the order and size consistency of the CredibleIntervals and CredibleIntervalsColours vectors.
void CalculateESS(const int nLags, const std::vector< std::vector< double >> &LagL)
KS: calc Effective Sample Size.
std::vector< ParameterEnum > ParamType
Make an enum for which class this parameter belongs to so we don't have to keep string comparing.
std::vector< std::string > NDSamplesNames
virtual void LoadAdditionalInfo()
allow loading additional info for example used for oscillation parameters
TVectorD * Central_Value
Vector with central value for each parameter.
std::vector< std::string > ExcludedTypes
int nSteps
KS: For merged chains number of entries will be different from nSteps.
TH2D * GetViolinPrior() const
Get Violin plot for all parameters with prior values.
void CheckCredibleRegionsOrder(const std::vector< double > &CredibleRegions, const std::vector< Style_t > &CredibleRegionStyle, const std::vector< Color_t > &CredibleRegionColor)
Checks the order and size consistency of the CredibleRegions, CredibleRegionStyle,...
std::vector< int > NDSamplesBins
void MakeCovariance_MP(const bool Mute=false)
Calculate covariance by making 2D projection of each combination of parameters using multithreading.
double ** BatchedAverages
Values of batched average for every param and batch.
void DrawPostfit()
Draw the post-fit comparisons.
TString CanvasName
Name of canvas which help to save to the sample pdf.
void SetPost2DPlotThreshold(const double Threshold)
Code will only plot 2D posteriors if Correlation are larger than defined threshold.
std::vector< std::string > ParameterGroup
std::string GetFDCov() const
void SetUseFFTAutoCorrelation(const bool useFFT)
Toggle using the FFT-based autocorrelation calculator.
TVectorD * Errors_HPD
Vector with error values using Highest Posterior Density.
void AutoCorrelation_FFT()
MJR: Autocorrelation function using FFT algorithm for extra speed.
void SetTLineStyle(TLine *Line, const Color_t Colour, const Width_t Width, const ELineStyle Style) const
Configures a TLine object with the specified style parameters.
void ReadInputCovLegacy()
void GetPolarPlot(const std::vector< std::string > &ParNames)
Make funny polar plot.
std::vector< std::vector< TH2D * > > hpost2D
Holds 2D Posterior Distributions.
void ParameterEvolution(const std::vector< std::string > &Names, const std::vector< int > &NIntervals)
Make .gif of parameter evolution.
void GetCovariance(TMatrixDSym *&Cov, TMatrixDSym *&Corr)
Get the post-fit covariances and correlations.
TVectorD * Means
Vector with mean values using Arithmetic Mean.
std::vector< TString > SystName_v
Vector of each sample PDF object.
void CacheSteps()
KS:By caching each step we use multithreading.
std::vector< TString > BranchNames
bool PlotFlatPrior
Whether we plot flat prior or not, we usually provide error even for flat prior params.
bool FancyPlotNames
Whether we want fancy plot names or not.
std::string GetNDCov() const
void ReweightPrior(const std::vector< std::string > &Names, const std::vector< double > &NewCentral, const std::vector< double > &NewError)
Reweight Prior by giving new central value and new error.
std::string ReweightName
Name of branch used for chain reweighting.
void SetStepCut(const std::string &Cuts)
Set the step cutting by string.
bool printToPDF
Will plot all plot to PDF not only to root file.
int GetNND() const
void GetSavageDickey(const std::vector< std::string > &ParName, const std::vector< double > &EvaluationPoint, const std::vector< std::vector< double >> &Bounds)
Calculate Bayes factor for point like hypothesis using SavageDickey.
void SetPlotErrorForFlatPrior(const bool PlotOrNot)
Set whether you want to plot error for parameters which have flat prior.
std::vector< std::vector< TString > > ParamNames
Name of parameters which we are going to analyse.
bool doDiagMCMC
Doing MCMC Diagnostic.
void ReadFDFile()
Read the FD cov file and get the input central values and errors.
std::vector< std::string > GetXSecCov() const
void FindInputFiles()
Read the output MCMC file and find what inputs were used.
bool CacheMCMC
MCMC Chain has been cached.
std::vector< int > ParamTypeStartPos
bool MadePostfit
Sanity check if Postfit is already done to not make several times.
void SetPlotBinValue(const bool PlotOrNot)
void PowerSpectrumAnalysis()
RC: Perform spectral analysis of MCMC .
void ScanInput()
Scan Input etc.
void BatchedMeans()
CW: Batched means, literally read from an array and chuck into TH1D.
int nEntries
KS: For merged chains number of entries will be different from nSteps.
void SavageDickeyPlot(std::unique_ptr< TH1D > &PriorHist, std::unique_ptr< TH1D > &PosteriorHist, const std::string &Title, const double EvaluationPoint) const
Produce Savage Dickey plot.
int nBranches
Number of branches in a TTree.
TVectorD * Errors_HPD_Positive
Vector with positive error (right hand side) values using Highest Posterior Density.
TMatrixDSym * Covariance
Posterior Covariance Matrix.
void MakeSubOptimality(const int NIntervals=10)
Make and Draw SubOptimality .
void MakeCovarianceYAML(const std::string &OutputYAMLFile, const std::string &MeansMethod) const
Make YAML file from post-fit covariance.
bool plotRelativeToPrior
Whether we plot relative to prior or nominal, in most cases is prior.
void MakeCovariance()
Calculate covariance by making 2D projection of each combination of parameters.
unsigned int BurnInCut
Value of burn in cut.
void SmearChain(const std::vector< std::string > &Names, const std::vector< double > &Error, const bool &SaveBranch) const
Smear chain contours.
void ReadInputCov()
CW: Read the input Covariance matrix entries. Get stuff like parameter input errors,...
Custom exception class used throughout MaCh3.
double float_t
Definition: Core.h:37