CovarianceBase

class pyMaCh3._pyMaCh3.covariance.CovarianceBase

Bases: pybind11_object

Methods Summary

calculate_likelihood(self)

Calculate penalty term based on inverted covariance matrix.

get_fancy_par_name(self, index)

Get the name of this parameter.

get_internal_par_name(self, index)

Get the internally used name of this parameter.

get_n_pars(self)

Get the number of parameters that this covariance object knows about.

get_proposal_array(self)

Bind a python array to the parameter proposal values for this covariance object.

propose_step(self)

Propose a step based on the covariances.

throw_par_prop(self[, mag])

Throw the proposed parameter by magnitude mag X sigma.

Methods Documentation

calculate_likelihood(self: pyMaCh3._pyMaCh3.covariance.CovarianceBase) float

Calculate penalty term based on inverted covariance matrix.

get_fancy_par_name(self: pyMaCh3._pyMaCh3.covariance.CovarianceBase, index: int) str
Get the name of this parameter.
param index:

The global index of the parameter

get_internal_par_name(self: pyMaCh3._pyMaCh3.covariance.CovarianceBase, index: int) str
Get the internally used name of this parameter.
param index:

The global index of the parameter

get_n_pars(self: pyMaCh3._pyMaCh3.covariance.CovarianceBase) int

Get the number of parameters that this covariance object knows about.

get_proposal_array(self: pyMaCh3._pyMaCh3.covariance.CovarianceBase) memoryview
Bind a python array to the parameter proposal values for this covariance object.

This allows you to set e.g. a numpy array to ‘track’ the parameter proposal values. You could either use this to directly set the proposals, or to just read the values proposed by e.g. throw_par_prop() :warning: This should be set AFTER all of the parameters have been read in from the config file as it resizes the array to fit the number of parameters. :param array: This is the array that will be set. Size and contents don’t matter as it will be changed to fit the parameters.

propose_step(self: pyMaCh3._pyMaCh3.covariance.CovarianceBase) None

Propose a step based on the covariances. Also feel free to overwrite if you want something more funky.

throw_par_prop(self: pyMaCh3._pyMaCh3.covariance.CovarianceBase, mag: float = 1.0) None
Throw the proposed parameter by magnitude mag X sigma.
param mag:

This value multiplied by the prior value of each parameter will be the width of the distribution that the parameter values are drawn from.