MaCh3 2.2.1
Reference Guide
Loading...
Searching...
No Matches
Bibliography
[1]

Carlos A. Argüelles, Austin Schneider, and Tianlu Yuan. A binned likelihood for stochastic models. JHEP, 06:030, 2019.

[2]

Steve Baker and Robert D. Cousins. Clarification of the use of chi-square and likelihood functions in fits to histograms. Nuclear Instruments and Methods in Physics Research, 221(2):437–442, 1984.

[3]

Roger J. Barlow and Christine Beeston. Fitting using finite Monte Carlo samples. Comput. Phys. Commun., 77:219–228, 1993.

[4]

Saptarshi Chakraborty, Suman K. Bhattacharya, and Kshitij Khare. Estimating accuracy of the MCMC variance estimator: a central limit theorem for batch means estimators, 2019.

[5]

J. S. Conway. Incorporating Nuisance Parameters in Likelihoods for Multisource Spectra. In PHYSTAT 2011, pages 115–120, 2011.

[6]

Hans Peter Dembinski and Ahmed Abdelmotteleb. A new maximum-likelihood method for template fits. Eur. Phys. J. C, 82(11):1043, 2022.

[7]

Joanna Dunkley, Martin Bucher, Pedro G. Ferreira, Kavilan Moodley, and Constantinos Skordis. Fast and reliable MCMC for cosmological parameter estimation. Mon. Not. Roy. Astron. Soc., 356:925–936, 2005.

[8]

Qijun Fang. A Brief Introduction to Geweke’s Diagnostics. https://math.arizona.edu/ piegorsch/675/GewekeDiagnostics.pdf, May 2014. STAT 675, University of Arizona.

[9]

Jonah Gabry and Martin Modrák. Visual MCMC diagnostics using the bayesplot package. https://mc-stan.org/bayesplot/articles/visual-mcmc-diagnostics.html, January 2024. Source: vignettes/visual-mcmc-diagnostics.Rmd.

[10]

A. Gelman, X. L. Meng, and H. Stern. Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, pages 733–760, 1996.

[11]

Andrew Gelman, Jessica Hwang, and Aki Vehtari. Understanding predictive information criteria for bayesian models. Statistics and Computing, 24(6):997–1016, 2014.

[12]

Heikki Haario, Eero Saksman, and Johanna Tamminen. An adaptive metropolis algorithm. Bernoulli, 7(2):223–242, April 2001.

[13]

Kenneth M. Hanson. Tutorial on Markov Chain Monte Carlo. Presented at the 29th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Technology, Gif-sur-Yvette, France, July 8–13, 2009, 2008. Revised 14/05/08, LA-UR-05-5680.

[14]

Florian Hartig. WAIC Calculation in BayesianTools Package, 2024. Accessed: 2024-11-30.

[15]

Fred James and Matthias Winkler. MINUIT User's Guide. June 2004.

[16]

C. Jarlskog. Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP Nonconservation. Phys. Rev. Lett., 55:1039, 1985.

[17]

H. Jeffreys. The Theory of Probability. UOP Oxford, 1998.

[18]

Jarle Karlsbakk. Likelihood Inference and Comparison of Time-Inhomogeneous Markov Processes. Master's thesis, Stockholm University, Department of Mathematics, 2011.

[19]

William A. Link and Mitchell J. Eaton. On thinning of chains in mcmc. Methods in Ecology and Evolution, 2(3):305–310, 2011.

[20]

D. Luengo, L. Martino, M. Bugallo, and others. A survey of monte carlo methods for parameter estimation. EURASIP Journal on Advances in Signal Processing, 2020. Relevant discussion in Section 3.2.1.

[21]

S. Navas and others. Review of particle physics. Phys. Rev. D, 110(3):030001, 2024.

[22]

Karl Pearson. X. on the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(302):157–175, 1900.

[23]

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, second edition edition, 1992. William H. Press: Harvard-Smithsonian Center for Astrophysics, Saul A. Teukolsky: Department of Physics, Cornell University, William T. Vetterling: Polaroid Corporation, Brian P. Flannery: EXXON Research and Engineering Company.

[24]

Gareth O. Roberts and Jeffrey S. Rosenthal. Examples of Adaptive MCMC. Journal of Computational and Graphical Statistics, 18(2):349–367, 2009.

[25]

Manuel D. Rossetti. The Batch Means Method, 2024.

[26]

David J. Spiegelhalter, Nicola G. Best, Bradley P. Carlin, and Angelika Van Der Linde. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society Series B: Statistical Methodology, 64(4):583–639, October 2002.

[27]

Stan Development Team. Stan Reference Manual: Effective Sample Size, 2018. Version 2.18.

[28]

The BRugs Development Team. DIC Function: Deviance Information Criterion, 2024. Accessed: 2024-11-29.

[29]

Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner. Rank-normalization, folding, and localization: An improved widehat R for assessing convergence of MCMC.

[30]

M. Wang, W.J. Huang, F.G. Kondev, G. Audi, and S. Naimi. The AME 2020 atomic mass evaluation (II). Tables, graphs and references. Chinese Physics C, 34(3):030003, 2021.